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Research into applications of synchronized chaotic systems assumes that it will be necessary to build many
different drive-response pairs, but little is known in general about designing higher dimensional chaotic flows.
In this paper, I do not add any design techniques, but I show that it is possible to create multiple drive-response
pairs from one chaotic system by applying chaos control techniques to the drive and response systems. If one
can design one chaotic system with the desired properties, then many drive-response pairs can be built from
this system, so that it is not necessary to solve the design problem more than once. I show both numerical
simulations and experimental work with chaotic circuits. I also test the response systems for ability to over-
come noise or other interference.
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I. INTRODUCTION

There has been much work on using synchronized chaos
[1–13] for applications such as communications or radar, but
a constant assumption in all of this work has been that de-
signing many different chaotic systems(for different trans-
mitters, for example) would not be difficult. Simply design-
ing new chaotic systems has not proven too difficult, as
Sprott has shown[14], but designing chaotic flows with spe-
cific properties in mind is considerably more difficult. There
are design techniques for one dimensional maps, and several
authors[15,16] have shown how to extend these techniques
to a continuous system, but these techniques are suitable
only for a very limited range of chaotic systems. If one wants
a chaotic flow that may be built as a high-frequency circuit,
for example, the behavior of the available circuit elements is
complex enough that the circuit design must proceed experi-
mentally.

I do not attempt to solve the general design problem, but
instead I show that if one chaotic system with the desired
properties may be built, then control techniques, such as the
OGY technique[17,18], may be used to create multiple
drive-response pairs from the desired chaotic system.

Instead of designing a response system to synchronize to
a particular chaotic drive system, the response system will
synchronize to a particular chaotic trajectory. Chaotic control
techniques are used to select the drive trajectory, and control
techniques are also used to make the response system syn-
chronize or not synchronize to the drive system.

The basic method is the following.
(1) Allow the chaotic drive system to follow a chaotic

trajectory of finite lengthL, and store control information
about this trajectory.

(2) Control the drive system to always follow this finite
length chaotic trajectory. Since the trajectory is finite length,
it must be repeated, so the system is actually periodic with
periodL.

(3) While the drive system follows a designated trajec-

tory, use a signal from the drive system to drive a response
system. The response system need not be identical to the
drive system, as generalized synchronization can be useful
for some applications.

(4) While this response system is being driven, store con-
trol information about it.

(5) Use the stored control information to control the
driven response system. The response system trajectory will
be the same as it was without control if the same drive signal
is being used.

(6) If the drive signal is now switched to a different sig-
nal, then the response system trajectory will be different.

The drive system can be controlled to follow different
trajectories. Each different drive system trajectory has a cor-
responding response system trajectory when the response is
uncontrolled. Using the matching response control sequence
will not alter the response trajectory, but using a nonmatch-
ing response control sequence will alter the response from
the uncontrolled trajectory.

II. CHAOTIC SYNCHRONIZATION

I assume a chaotic drive system of the form

xẆ = fsxWd, s1d

and a response system of the form

yẆ = gsyWd + hsxWd, s2d

wherexW and yW are vectors, andhsxWd is a function ofxW. The
coupling in Eq.s2d is a linear coupling, as are all types of
coupling used in this paper, but other types of coupling are
also possible.

For synchronization to occur, all the Lyapunov exponents
of the dynamical system of Eq.(2) must be negative. If the
function g is identical to the functionf, then identical syn-
chronization is possible, otherwise the synchronization is
said to be generalized synchronization. Detecting identical
synchronization is easy, as signals in the response system
will be almost the same(within experimental limits) as sig-*Electronic address: Thomas.L.Carroll@nrl.navy.mil
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nals in the drive system. Detecting generalized synchroniza-
tion is more difficult and, in fact, there are many different
definitions for generalized synchronization[12]. For this pa-
per, we choose a response system with only one basin of
attraction, and for synchronization we require only that the
response system have all negative Lyapunov exponents. In
this case, one may use an auxiliary system to detect synchro-
nization [16]: two copies of the response system are built,
and their outputs are compared to each other. If the outputs
of the two response systems match(within experimental er-
ror), then the response is said to be synchronized to the drive.

III. CONTROL

Ott, Grebogi, and Yorke(OGY) [17] showed that only
small perturbations were necessary to control a chaotic sys-
tem if the control kept the system near solutions of its equa-
tions of motion, such as unstable periodic orbits. Hayeset al.
[19] later showed that one could encode information by us-
ing OGY control to switch between different trajectories of a
chaotic system. As Hayes pointed out, the availability of
multiple trajectories was a consequence of the positive en-
tropy of a chaotic system. Hayes felt that this positive en-
tropy should make chaotic signals natural information carri-
ers. Hayes and others[11,19–21] have shown that one may
use different states of the chaotic system as symbols, and
control may be used to determine which symbol sequences
are transmitted.

In this work, chaos control techniques are used to gener-
ate multiple different trajectories from a chaotic system.
These trajectories have a finite length, so they must be re-
peated, but the trajectories may be chosen long enough that
they still have broad band spectra. A chaotic response system
is also controlled so that it will synchronize only to one
trajectory from a chaotic transmitter, and not to any others.

IV. NUMERICAL WORK

I first demonstrate control and synchronization in a nu-
merical experiment. In this numerical example, the drive and
response systems are identical, so identical synchronization
is seen. The chaotic system here is three dimensional, and I
measure the length of a chaotic trajectory by the number of
times that the variablex2 crosses 0 in the positive direction.

The drive system is similar to the piecewise-linear Rossler
system[22]:

dx1

dt
= − as0.05x1 + 0.5x2 + x3d,

dx2

dt
= − as− x1 − 0.3x2d, s3d

dx3

dt
= − as− gsx1d + x3d,

gsxd = 5m1x + b2 x ø − x0

m0x, − x0 , x , x0

m1x + b1, x ù x0
6 ,

where a=10.0, m0=0.1, m2=15.0,x0=3.0,b1=x0sm0−m1d,
andb2=−b1. Figure 1(a) is a plot ofx2 versusx1, while Fig.
1(b) is a plot ofx3 versusx2. These equations were integrated
with a fourth order Runge-Kutta integrator with a time step
of 0.04 s.

The response system is a duplicate of the drive system.
The response system is described by

dy1

dt
= − as0.05y1 + 0.5y2 + y3d,

dy2

dt
= − af− y1 − 0.3y2 + csy2 − x2dg,

s4d
dy3

dt
= − af− gsy1d + y3g,

dz

dt
= asux2 − y2u − zd,

where the variablez is a measure of the average synchroni-
zation error and the coupling constantc=0.1.

An outline of the experiment is the following.
(1) Allow the drive system to evolve freely for 100

cycles (measured by thex2 0 crossing), after allowing for
initial transients to die down.

(2) Each time x2 crosses 0 in the positive direction,
record the values ofx1 andx3. The sequence of 100x1 andx3
values is the control sequence for the drive. Call this control
sequence chaos 1.

FIG. 1. Attractors for the chaotic system of Eq.(3).
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(3) Repeat for different initial conditions to get the con-
trol sequence chaos 2.

(4) Control the drive system with chaos 1 by waiting for
x2 to cross 0 in the positive direction and then settingx1 and
x3 equal to their corresponding values from the control se-
quence chaos 1. Use thex2 signal from the drive system to
drive the identical response system[Eq. (4)]. The control
sequences have a finite length, so the controlled system is
now periodic, but with a period of 100.

(5) The response system is now being driven by a con-
trolled signal from the drive system(which is controlled by
chaos 1), and it will synchronize exactly to the drive system.
When the response variabley2 crosses 0 in the positive di-
rection, record the values ofy1 and y3 to get the response
control sequence response 1. When the drive system is con-
trolled by chaos 2, repeat the same procedure to get the re-
sponse control sequence response 2.

A. Phase Control

When the uncontrolled response system of Eq.(4) is
driven by the uncontrolled drive system of Eq.(3), identical
synchronization occurs; that is,y1, y2 andy3 approachx1, x2
and x3. If drive and response are controlled by the same
control sequence, identical synchronization will also occur,
but only if the drive and response control sequences are in
phase with each other.

The variablez in Eq. (4) is used to help judge if the drive
and response control sequences are in phase. With control on
for the response system, wheny2 crosses 0 in the positive
direction, the value ofz is compared to some threshold. Ifz
is less than the threshold, then it is assumed that drive and
response are synchronized, andy1 and y3 are set to the ap-
propriate values in the control sequence. Ifz exceeds the
threshold, then it is assumed that the drive and response con-
trol sequences are out of phase, and so the phase of the
response control sequence is advanced by 1 before control is
applied. In a manner similar to digital code division multiple
access(CDMA) [23], the response control sequence is ad-
vanced at a faster rate than the drive control sequence until
synchronization is obtained.

Figure 2 shows the results of the control when a threshold
of z=0.2 is used. Figure 2 is a plot ofd=x1−y1. In Fig. 2(a),
the response system is free runningsc=0d for the first 40 s.
At t=40 s,c is set to 0.1 and control is applied to the re-
sponse. Initially the drive and response control sequences are
out of phase, so there is an initial transient(which should
depend on the length of the control sequence) before syn-
chronization is obtained at about 200 s. In Fig. 2(b), different
control sequences are used for drive and response. Once
again, control is started at 40 s, but because drive and re-
sponse control sequences are different, no synchronization is
seen.

The utility of this signal recognition method will depend
on how many different control sequences can be produced. It
should be possible to estimate the number of different con-
trol sequences by assigning symbol sequences to the control
sequences. First, a generating partition for the chaotic system
must be found. While this is a difficult process in general,

there are some recent methods for finding such partitions
[24,25]. The generating partition is then used to define a set
of symbols; i.e., if the chaotic trajectory passes through one
region, one particular symbol is produced, while if it passes
through a different region, a different symbol may be pro-
duced. It may be that the chaotic system possess a grammar,
so that not all symbol sequences occur. The number of dif-
ferent symbol sequences that occur for a given sequence
lengthL should correspond to the number of possible control
sequences.

This simple flow is useful to show how the control and
synchronization method works, but it is not practical. Adding
Gaussian white noise with an amplitude of 0.02 or greater
destroys synchronization. Below, I show a circuit example
which is more robust to additive noise.

V. CIRCUIT EXPERIMENTS

The circuit used for these experiments is based on a cha-
otic system that maintains phase synchronization even when
noise much larger than the transmitted signal is present
[26,27]. This system consists of a Rossler-like chaotic circuit
which operates in one frequency range coupled to a stable
(nonoscillating) system which operates in a much lower fre-
quency range. The separation of frequencies allows the
lower-frequency part of the response circuit to stay in phase
synchronization to the lower-frequency part of the drive sys-
tem. This is a fairly complicated chaotic circuit, and design-
ing a circuit with these noise-robust properties was difficult,
so it is desirable to produce many drive-response pairs from
this circuit, rather than having to design more circuits with
the same properties.

The circuits used were built using operational amplifiers.
The drive circuit may be approximately described by the
equations

FIG. 2. Results of driving and controlling the response system
of Eq. (4). d=x1−y1 is the difference between drive and response
systems. In(a), the proper response control sequence was used,
resulting in synchronization after a transient. In(b), the wrong re-
sponse control sequence was used, resulting in no synchronization.
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dx1

dt
= −

1

RC1
s0.02x1 + 0.5x2 + 0.5ux4ud,

dx2

dt
= −

1

RC1
s− x1 + 0.02x2d,

dx3

dt
= −

fsx1d
RC2

s0.02x3 + 0.5x4 + x5 + 0.1x1d,

s5d
dx4

dt
= −

fsx1d
RC2

s− x3 − 0.13x4d,

dx5

dt
= −

fsx1d
RC2

f− gsx3d + x5g,

gsxd = H0, x , 3

15sx − 3d, x ù 3
J ,

fsxd = 1 + 0.2sx + 1.75d,

whereR=100 kV, C1=0.1 mF, andC2=0.001mF. For these
parameters, the signalx1 has a frequency of approximately
10.5 Hz, whilex3 has a frequency of about 946 Hz. Figure
3(a) is a plot of x2 versusx1, and Fig. 3(b) is a plot of x4
versusx3. The functionfsxd serves to broaden the spectrum
of the fast signals(x3 throughx5).

The signal that is actually transmitted isxt defined by

dxt

dt
= −

1

RC2
FsqS x4

x3
2 + x4

2D + xtG , s6d

where thesqsxd function means thatsqsxd=15 V if x.0 and
sqsxd=−15 V if x,0. Thesqsxd function was executed by
an operational amplifier with a very large gain. The inte-
gral was used as a low pass filter so thatxt was not a
square wave.

Figure 4 is a plot ofxt as a function of time, while Fig. 5
is its power spectrum. The signalxt has a constant envelope,
which makes it more efficient to transmit, and makes it easier
to restore its amplitude to a known value after transmission.

The response circuit may be described by the equations

dy1

dt
= −

1

RC1
s0.1y1 + 0.5y2 + 0.5uy3ud,

dy2

dt
= −

1

RC1
s− y1 + 0.1y2d,

s7d
dy3

dt
= −

1

RC2
s0.02y3 + 0.5y4 + 0.1y1d,

dy4

dt
= −

1

RC2
s− y3 − kxtd,

whereR, C1, andC2 are the same as in Eq.(5). The constant
k is used to alter the amplitude of the transmitted signalxt.

FIG. 3. Attractors for the chaotic circuit used to provide a driv-
ing signal.(a) is the attractor from the fast part of the circuit, while
(b) is the attractor for the slow part of the circuit.

FIG. 4. Transmitted signalxt produced by the chaotic driving
circuit.

FIG. 5. Power spectrum of the signalxt produced by the chaotic
drive circuit.
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The response circuit does not match the drive circuit,
which means that exact synchronization is not possible. In
order to determine when generalized synchronization took
place, the auxiliary system approach was used[28]. A second
response circuit that was identical(within experimental er-
ror) was built. In order to improve the matching between
circuits, resistors with a 1% tolerance were used, and a 20
turn potentiometer was used in the integrator for they1 signal
to correct the time constant 1/RC1 for error in the capacitor
value. They1 signals from the two response circuits were
compared to determine if generalized synchronization was
occurring.

The control methods used for the circuit were similar in
principle to those used for the numerical experiment, but
some details were different. Rather than try to control the
drive circuit as in the numerical section, a 10 000 point sig-
nal xt from the drive circuit was digitized at 20 000 points/s
and played back through an arbitrary wave form generator.
The playback rate was chosen so that the frequency of the
signal from the arbitrary wave form generator matched the
frequency of the original drive signal. Chaotic signals were
recorded at two different times, resulting in two different
chaotic sequences, labeled as chaos 1 and chaos 2. The cha-
otic signals were played back with a peak to peak amplitude
of 1.98 V, and the drive constantk in Eq. (7) was set to 1.0.

For the control of the response circuit, they1 signal was
first passed through a 1mF capacitor to remove the dc com-
ponent. This signal was then integrated by an operational
amplifier integrator to smooth out any residual ripple iny1,
producing the signalc:

dc

dt
= −

1

RC1
sy1 + 0.1cd, s8d

whereR andC1 were previously defined. Several logic cir-
cuits were then used to give a short +5 V pulse whenc
crossed 0 in the negative direction.

In order to record the necessary control information, the
response circuits were driven by the recordedxt signal from
the drive circuit, which had been controlled by the sequences
chaos 1 or chaos 2. Whenc crossed 0 in the negative direc-
tion, the value ofy1 was stored for the response control se-
quence. The response control sequence when the drive cir-
cuit was controlled by chaos 1 was response 1, and when the
drive was controlled by chaos 2, the response control se-
quence was response 2.

During control, the response circuits were driven by the
recordedxt signal from the drive circuit, which had been
controlled by the sequence chaos 1 or chaos 2. Whenc
crossed 0 in the negative direction, the difference betweeny1
and the corresponding signal from the matching auxiliary
circuit y1a was compared to a fixed threshold in the com-
puter. If uy1−y1au.0.3, it was assumed that the response cir-
cuits were not synchronized, and the phase of the response
control sequence was advanced by 1. If the difference was
less than the threshold, the control phase was not advanced.
For either result, the computer then sety1 for the circuit to
the next value in the response control sequence, after which
the response control sequence phase was advanced. The se-

quences chaos 1 and chaos 2 corresponded to five cycles of
the slow part of the circuit, so each control sequence had a
length of 5.

Figure 6 is a plot ofy1a versusy1 when the arbitrary wave
form generator is playing back the drive signalxt from a
drive circuit controlled by chaos 1 and the response circuit is
being controlled by the control sequence response 1. There
are some occasional small departures from synchronization,
but most of the time the two auxiliary systems are synchro-
nized. Figure 7 is the same plot when the drive circuit was
controlled by chaos 2 but the response control sequence was
still response 1. There is a definite loss of synchronization, so
the pair of response circuits are able to recognize the differ-
ence between chaos 1 and chaos 2.

This circuit can still recognize the difference between
chaos 1 and chaos 2 when noise is present. The arbitrary
wave form generator was used to produce a Gaussian white
noise signal with a bandwidth of 50 kHz, which was added
to the drive signalxt from a drive circuit controlled by chaos
1. Figure 8 showsy1a versusy1 when the drive circuit was
controlled by chaos 1 and noise was added toxt, with a
signal power to noise power ratio of 0.7s−1.4 dBd. The re-

FIG. 6. Plot showing synchronization of the response circuit
sy1d and the auxiliary response circuitsy1ad, confirming generalized
synchronization when the correct response control sequence for a
particular drive signal is used.

FIG. 7. Plot showing a lack of generalized synchronization be-
tween the response circuity1 and the auxiliary response circuity1a

when a response control sequence that does not correspond to the
drive signal is used.
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sponse system was controlled by the control sequence re-
sponse 1. The synchronization is still recognizable when Fig.
8 is compared to Fig. 7, where there was no noise, but the
wrong control sequence was used. The cross correlation at 0
time lag betweeny1 and y1a when the wrong control se-
quence was used but no noise was present was 0.93, while
the cross correlation when the correct control was used but
the signal to noise ratio was 0.7 was 0.98.

The effect of interference from another chaotic signal on
the response circuits was also tested. A second arbitrary wave
form generator was used to play back the transmitted signal
from a drive circuit controlled by chaos 2. This second trans-
mitted signalxt2 was added to thext signal from a drive
circuit controlled by chaos 1. When bothxt andxt2 had the
same amplitude, the cross correlation betweeny1 andy1a was
0.96. When thext2 signal amplitude was 1.5 times the am-
plitude of thext signal, the cross correlation dropped to 0.91,
lower than the value when the wrong drive signal was used.
The response circuits can reject some interference, but they

have trouble if the interference is too similar to the driving
signal.

VI. CONCLUSIONS

Reference[11] also uses chaos control to synchronize two
chaotic systems, but the content of that paper is very differ-
ent from this work. In Ref.[11], the symbol sequence for the
chaotic trajectory is not known at the receiver, but is com-
municated through the channel. Reference[11] uses the
properties of these symbol sequences to determine the maxi-
mum possible precision of synchronization for identical, lag,
or anticipated synchronization.

In the present work, the symbol sequence corresponding
to the drive system trajectory is already known at the re-
ceiver. This information is used to determine which trajec-
tory is being sent. The technique in this paper is similar to
CDMA [23], where different orthogonal sequences are used
to identify different transmitters.

The control and synchronization procedure should make it
easier to design multiple drive-response pairs, as it is not
necessary to build a completely different chaotic circuit for
each pair. Since the spectra of the different drive systems are
the same(for a long enough trajectory), it should also be
possible to make better use of frequency space by using the
same frequency band for many different drive-response
pairs.

In the circuit experiments, the ability of a controlled re-
sponse system to recognize a particular signal in the presence
of noise or interference was tested. It has been shown in
previous work that the noise robustness of similar two fre-
quency circuits may be improved by increasing the separa-
tion between fast and slow frequencies[26]. Resistance to
chaotic interference was not as good, but designing the cha-
otic drive system so that different output sequences were less
similar to each other should increase the resistance to this
type of interference. The control techniques used here also
allow greater freedom in designing the transmitter, since the
receiver no longer has to be a replica of the transmitter.
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